top of page
Open Book

Publications

Decoys cover STM.gif
Screen Shot 2021-01-20 at 9.46.17 PM.png

*corresponding authors; ** these authors have contributed equally to the work​

(1)        Morris, K.**; Schnoor, B.**; Papa, A.-L*. Platelet-Cancer Cell Interplay as a New Therapeutic Target. Biochimica et Biophysica Acta - Reviews on Cancer, 2022, Accepted.

(2)        Schnoor, B.; Papa, A.-L*. Lyophilized Platelets Inhibit Platelet Aggregation with Simultaneous Paradoxical Promotion of Platelet Adhesion. Frontiers in Bioengineering and Biotechnology, 2022, Accepted.

(3)        Bilynsky, C.; Millot, N.; Papa, A.-L*. Radiation Nanosensitizers in Cancer Therapy—From Preclinical Discoveries to the Outcomes of Early Clinical Trials. Bioengineering & Transla Med 2022, 7 (1). https://doi.org/10.1002/btm2.10256.

(4)        Kottana, R. K.; Maurizi, L.; Schnoor, B.; Morris, K.; Webb, J. A.; Massiah, M. A.; Millot, N.; Papa, A.-L*. Anti‐Platelet Effect Induced by Iron Oxide Nanoparticles: Correlation with Conformational Change in Fibrinogen. Small 2020, 2004945. https://doi.org/10.1002/smll.202004945.

(5)        Papa, A.-L*.; Jiang, A.; Korin, N.; Chen, M. B.; Langan, E. T.; Waterhouse, A.; Nash, E.; Caroff, J.; Graveline, A.; Vernet, A.; Mammoto, A.; Mammoto, T.; Jain, A.; Kamm, R. D.; Gounis, M. J.; Ingber, D. E.* Platelet Decoys Inhibit Thrombosis and Prevent Metastatic Tumor Formation in Preclinical Models. Sci Transl Med 2019, 11 (479). https://doi.org/10.1126/scitranslmed.aau5898.

Press releases: https://www.sciencemag.org/news/2019/02/these-platelet-decoys-could-prevent-blood-clots-without-spreading-cancer, https://wyss.harvard.edu/platelet-decoys-outsmart-both-clots-and-cancer/, https://mediarelations.gwu.edu/researchers-develop-reversible-drug-free-antiplatelet-therapy-fight-dangerous-blood-clots-and-cancer

(6)        Papa, A.-L.; Korin, N.; Kanapathipillai, M.; Mammoto, A.; Mammoto, T.; Jiang, A.; Mannix, R.; Uzun, O.; Johnson, C.; Bhatta, D.; Cuneo, G.; Ingber, D. E. Ultrasound-Sensitive Nanoparticle Aggregates for Targeted Drug Delivery. Biomaterials 2017, 139, 187–194. https://doi.org/10.1016/j.biomaterials.2017.06.003.

(7)        Jain, A.; van der Meer, A. D.; Papa, A.-L.; Barrile, R.; Lai, A.; Schlechter, B. L.; Otieno, M. A.; Louden, C. S.; Hamilton, G. A.; Michelson, A. D.; Frelinger, A. L.; Ingber, D. E. Assessment of Whole Blood Thrombosis in a Microfluidic Device Lined by Fixed Human Endothelium. Biomed Microdevices 2016, 18 (4), 73. https://doi.org/10.1007/s10544-016-0095-6.

(8)        Papa, A.-L.; Boudon, J.; Bellat, V.; Loiseau, A.; Bisht, H.; Sallem, F.; Chassagnon, R.; Bérard, V.; Millot, N. Dispersion of Titanate Nanotubes for Nanomedicine: Comparison of PEI and PEG Nanohybrids. Dalton Trans 2015, 44 (2), 739–746. https://doi.org/10.1039/c4dt02552k.

(9)        Maurizi, L.; Papa, A.-L.; Dumont, L.; Bouyer, F.; Walker, P.; Vandroux, D.; Millot, N. Influence of Surface Charge and Polymer Coating on Internalization and Biodistribution of Polyethylene Glycol-Modified Iron Oxide Nanoparticles. j biomed nanotechnol 2015, 11 (1), 126–136. https://doi.org/10.1166/jbn.2015.1996.

(10)      Marosfoi, M. G.; Korin, N.; Gounis, M. J.; Uzun, O.; Vedantham, S.; Langan, E. T.; Papa, A.-L.; Brooks, O. W.; Johnson, C.; Puri, A. S.; Bhatta, D.; Kanapathipillai, M.; Bronstein, B. R.; Chueh, J.-Y.; Ingber, D. E.; Wakhloo, A. K. Shear-Activated Nanoparticle Aggregates Combined With Temporary Endovascular Bypass to Treat Large Vessel Occlusion. Stroke 2015, 46 (12), 3507–3513. https://doi.org/10.1161/STROKEAHA.115.011063.

(11)      Pandey, A.; Sarangi, S.; Chien, K.; Sengupta, P.; Papa, A.-L.; Basu, S.; Sengupta, S. Anti-Platelet Agents Augment Cisplatin Nanoparticle Cytotoxicity by Enhancing Tumor Vasculature Permeability and Drug Delivery. Nanotechnology 2014, 25 (44), 445101. https://doi.org/10.1088/0957-4484/25/44/445101.

(12)      Sarangi, S.; Pandey, A.; Papa, A.-L.; Sengupta, P.; Kopparam, J.; Dadwal, U.; Basu, S.; Sengupta, S. P2Y12 Receptor Inhibition Augments Cytotoxic Effects of Cisplatin in Breast Cancer. Med. Oncol. 2013, 30 (2), 567. https://doi.org/10.1007/s12032-013-0567-y.

(13)      Papa, A.-L.; Sidiqui, A.; Balasubramanian, S. U. A.; Sarangi, S.; Luchette, M.; Sengupta, S.; Harfouche, R. PEGylated Liposomal Gemcitabine: Insights into a Potential Breast Cancer Therapeutic. Cell Oncol (Dordr) 2013, 36 (6), 449–457. https://doi.org/10.1007/s13402-013-0146-4.

(14)      Papa, A.-L.; Dumont, L.; Vandroux, D.; Millot, N. Titanate Nanotubes: Towards a Novel and Safer Nanovector for Cardiomyocytes. Nanotoxicology 2013, 7 (6), 1131–1142. https://doi.org/10.3109/17435390.2012.710661.

(15)      Mirjolet, C.; Papa, A. L.; Créhange, G.; Raguin, O.; Seignez, C.; Paul, C.; Truc, G.; Maingon, P.; Millot, N. The Radiosensitization Effect of Titanate Nanotubes as a New Tool in Radiation Therapy for Glioblastoma: A Proof-of-Concept. Radiother Oncol 2013, 108 (1), 136–142. https://doi.org/10.1016/j.radonc.2013.04.004.

(16)      Paraskar, A.; Soni, S.; Roy, B.; Papa, A.-L.; Sengupta, S. Rationally Designed Oxaliplatin-Nanoparticle for Enhanced Antitumor Efficacy. Nanotechnology 2012, 23 (7), 075103. https://doi.org/10.1088/0957-4484/23/7/075103.

(17)      Papa, A.-L.; Basu, S.; Sengupta, P.; Banerjee, D.; Sengupta, S.; Harfouche, R. Mechanistic Studies of Gemcitabine-Loaded Nanoplatforms in Resistant Pancreatic Cancer Cells. BMC Cancer 2012, 12, 419. https://doi.org/10.1186/1471-2407-12-419.

(18)      Papa, A.-L.; Maurizi, L.; Vandroux, D.; Walker, P.; Millot, N. Synthesis of Titanate Nanotubes Directly Coated with USPIO in Hydrothermal Conditions: A New Detectable Nanocarrier. J. Phys. Chem. C 2011, 115 (39), 19012–19017. https://doi.org/10.1021/jp2056893.

(19)      Papa, A.-L.; Millot, N.; Saviot, L.; Chassagnon, R.; Heintz, O. Effect of Reaction Parameters on Composition and Morphology of Titanate Nanomaterials. J. Phys. Chem. C 2009, 113 (29), 12682–12689. https://doi.org/10.1021/jp903195h.

(20)      Saviot, L.; Netting, C. H.; Murray, D. B.; Rols, S.; Mermet, A.; Papa, A.-L.; Pighini, C.; Aymes, D.; Millot, N. Inelastic Neutron Scattering Due to Acoustic Vibrations Confined in Nanoparticles: Theory and Experiment. Phys. Rev. B 2008, 78 (24), 245426. https://doi.org/10.1103/PhysRevB.78.245426.

Book Chapters

(1)     Maurizi L, Papa AL, Boudon J, Sudhakaran S, Pruvot B, Vandroux D, Chluba J, Lizard G, Millot N. Toxicological Risk Assessment of Emerging Nanomaterials: Cytotoxicity, Cellular Uptake, Effects on Biogenesis and Cell Organelle Activity, Acute Toxicity and Biodistribution of Oxide Nanoparticles. Unraveling the Safety Profile of Nanoscale Particles and Materials-From Biomedical to Environmental Applications. 2018;InTech. https://www.intechopen.com/books/unraveling-the-safety-profile-of-nanoscale-particles-and-materials-from-biomedical-to-environmental-applications/toxicological-risk-assessment-of-emerging-nanomaterials-cytotoxicity-cellular-uptake-effects-on-biog

(2)     Boudon J, Papa A-L, Paris J, Millot N. Titanate nanotubes as a versatile platform for nanomedicine. Nanomedicine. 2014;One Central Press:404-29. http://www.onecentralpress.com/wp-content/uploads/2014/11/CHAPTER-16-NM-09-LATEST.pdf

(3)     Boudon J, Sallem F, Loiseau A, Maurizi L, Papa A.-L., Millot N, Development of novel versatile theranostic platforms based on titanate nanotubes: towards safe nanocarriers for biomedical applications, 2021.

bottom of page